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Abstract. The full description of the energy spectrum is given for a fcc crystal with a passive
interface. Calculations are performed in the framework of lattice dynamics, taking into account
nearest-neighbour central interactions. The exact solutions for the projected densities of shear
phonons are obtained, and both low-frequency and high-frequency shear waves localized at the
interface are described analytically. It is shown that the full set of the eigen-solutions of the
boundary-value problem is divided into two classes—symmetrical and antisymmetrical about
the plane of the defect. The appearance of the localized interface wave is associated with
singularities of the projected density of states at the corresponding edge of the bulk band for a
certain value of the two-dimensional wave vector.

1. Introduction

The presence of a planar crystal defect substantially changes the spectrum of quasiparticle
excitations and can lead to localized vibrations whose amplitude decreases from the defect
towards the bulk of the crystal. The energy spectrum of the surface long-wavelength
excitations has been widely investigated by means of Brillouin scattering (BS). First applied
to optically transparent materials, BS soon became an effective instrument for the study of
diverse surface excitations such as surface acoustic and spin waves in thin films, and at
interfaces of multilayered materials. BS investigation has been particularly successful in
the study of surface waves and resonances, and ‘leaky’ and pseudosurface vibrations of the
continuous spectrum [1–6].

Two main mechanisms are known to be responsible for the inelastic scattering of
light: the elasto-optical coupling caused by the modulation of the dielectric constantε

of the medium (mainly for optically transparent materials), and the ‘ripple’ mechanism
which is dominant for opaque crystals. The latter mechanism makes it possible to observe
vibrations associated with the surface (actually the waves at the planar crystal defect). The
theory of BS from the surface thermally excited acoustical ‘ripple’ involves the response
function of the scattering surface wave and its projected density of states [7]. Choosing
the light scattering plane, and so determining the two-dimensional vector for the surface
wave, one can separate shear horizontal (SH) waves from sagittally polarized waves for
some crystallographic directions [8], and study the features of each spectrum of the surface
excitations.
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The dispersion of the localized elastic modes, as well as the power spectrum, can be
probed in any wavelength region by means of electron energy-loss spectroscopy and low-
energy light-atom He scattering [9, 10].

Here we present an elegant and effective procedure for the calculation of the projected
density of the SH interface phonons using the Jacobi matrix method [11, 12] (the recursion
method). The method does not involve the use of Bloch’s theorem or the band structure
of phonons in any way, and so can be applied to complicated (reconstructed) surfaces. We
choose a certain model of the defect to describe the excitations localized at the interface
between two fcc crystals, and find the change of the bulk band caused by the defect for the
SH vibrations analytically.

2. Methods

The basic characteristics of the elastic surface waves, the cross sections of the BS, are
described by means of the so-called projected density of phonon states%(κ, ω) (PDPS).
For instance, the expression for the mean square displacement power spectrum involves the
factor%(κ, ω) directly, and has the form [7, 13]

〈v2
α(κ, ω, r⊥)〉 =

kBT

hω

∑
j

|eα(κ, ωj , r⊥)|2%(κ, ωj )

(the two-dimensional wave vectorκ in the defect plane is introduced,r⊥ determines the
normal distance from the defect plane;kBT /hω is the high-temperature thermal factor,j is
the branch index, andeα(κ, ωj , r⊥) are the polarization vectors divided by the corresponding
frequency value

√
ωj ).

A special method for PDPS calculation was introduced in papers [14] (see also [15]).
We describe the main items of the method associated with the PDPS below.

The dynamics of the crystal lattice in harmonic approximation is based on the following
equation:

∂χi(R, t)

∂t2
= −

∑
R′
Lik(R,R

′)χk(R′, t) (1)

whereχk(R, t)m1/2(R) is thekth component of the vector giving the displacement of the
atom from its equilibrium position;m(R) is the mass of the atom in theR position;

Lik(R,R
′) = m1/2(R)m1/2(R′)Aik(R,R′)

and the matrixAik(R,R′) contains the interaction constants for the atoms.
Let us consider the defect which preserves the crystal periodicity in a certain crystal

plane (say, in the (001) plane), i.e. we assume

m(R) = m Lik(R,R
′) = Lik(x − x ′, y − y ′, zz′). (2)

Searching for the solution of equation (1) in the form

χi(R, t) = χi(z) exp(i(kxx + kyy)− iωt) (3)

we obtain the following equation:∑
κ,z′
(λδikδzz′ − Cik(κ; zz′))χi(z′) = 0 (4)

whereκ is the two-dimensional wave vector with the componentskx, ky ; λ = ω2; and

Cik(κ; zz′) =
∑
x,y

Lik(z, z
′; x, y)exp(−i(kxx + kyy)). (5)
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When the planar defect disturbs a finite number of crystal layers, we can write the
self-adjoint operator̂C(κ) in the spaceH of the atom displacements in the form

Ĉ(κ) = Ĉ(0)(κ)+ 3̂(κ) (6)

where the linear operator̂3(κ) describes the presence of the planar defect, and has a finite
number of non-zero matrix elements in coordinate space; the operatorĈik(κ; zz′) transforms
into Ĉ(0)ik (κ; z− z′) in the case of the ideal crystal.

Let us choose the normalized arbitrary vectorh in the spaceH and construct the row

h, Ĉh, Ĉ2h, . . ..

Orthonormalizing the row, we get the following set:

h(0),h(1),h(2), . . . (7)

which becomes the basis of some subspaceHh of the Hilbert spaceH . The subspaceHh

is associated with the initial vectorh. The self-adjoint operator̂C(κ) creates the operator
Ĉh(κ) in the subspaceHh, and the matrix of the operator̂Ch(κ) has the form of the
three-diagonal Jacobi matrix in the basis (7), i.e.Ĉhik = (hi, Ĉhk) = 0 for |i − k| > 2.

The Jacobi matrix possesses the following property: its elements (an: diagonal; and
bn: the non-diagonal) tend to certain constant values whenn → ∞. For instance, if the
spectrum of the operator̂C is continuous, the operator̂C is defined over a finite energy
interval [λ1(κ), λ2(κ)], and its spectral density%(λ,κ) satisfies the condition∫ λ2

λ1

|ln %(λ,κ)| dλ <∞ (8)

then the limiting values of the matrix elements are

a = lim
n→∞ an =

1

2
[λ1(κ)+ λ2(κ)] b = lim

n→∞ bn =
1

4
[λ2(κ)− λ1(κ)] . (9)

The spectral density corresponding to the Jacobi matrix for which the first 2n + 1 matrix
elements differ from their limiting values and the remaining elements are equal to their
limiting values can be written in the form

%(λ,κ) = 1

π

ImK(λ,κ)

|Pn+1(λ,κ)− bnPn(λ,κ)K(λ,κ)|2 . (10)

HerePn(λ,κ) are thenth-degree polynomials inλ, which satisfy the following conditions:

bnPn+1(λ,κ) = (λ− an)Pn(λ,κ)− bn−1Pn−1(λ,κ) (11)

under the initial conditionsP−1(λ,κ) = 0, P0(λ,κ) = 1. The functionK(λ,κ) in equation
(11) is a continued fraction corresponding to the Jacobi matrix with the elements equal to
their limiting values. If conditions (9) are satisfied, the continued fractionK(λ,κ) has the
form

K(λ,κ) = 8

[λ2(κ)− λ1(κ)]
2

[
λ− 1

2
[λ1(κ)+ λ2(κ)] ± i

√
(λ− λ1(κ))(λ2(κ)− λ)

]
.

(12)

In the next section we apply the above method to the analysis of the SH interface phonons
in fcc crystal.
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3. Results

While analysing the vibrations at any defect in a crystal on the basis of the crystal lattice
dynamics, taking into account explicitly the discreteness of the crystal structure, we must
consider the finite size of the defect, which cannot be smaller than the atomic spacing. As a
result, the vibrations localized at the defect acquire characteristics which cannot be studied
in a continual description of the vibrations. For instance, while studying the planar defect
in a crystal we can encounter vibrations in which opposite banks of the planar defect vibrate
in antiphase. In our opinion such peculiarities are associated with the discreteness of the
crystal and with the finite size of the defect rather than with its structure. In this connection
we demonstrate the peculiarities of the localized vibrations by using the following model of
the planar defect. In this model the defect can be regarded as a coherent contact between two
crystalline half-spaces connected through atomic interactions which differ from the atomic
interactions in each half-space. Such a model describes the interface qualitatively, and was
used earlier both to emphasize the interface contribution to the surface wave properties [16,
17] and the agreement of the form of the boundary conditions in the long-wavelength limit
[18], and to show the peculiarities of the interfilm exchange in magnetic multilayers [19].

We study the model of a one-atom fcc crystal lattice with short-range interactions
between nearest neighbours. The crystal structure under consideration satisfies the cond-
itions of translation and rigid-rotation invariance, and is mechanically stable [20]. We
choose the axes along the [100], [010], [001] crystallographic directions and fix the (001)
plane. Later, we will characterize the displacement with a scalar function|n|m〉 wheren
refers to the number of the atomic layer counting from the fixed plane, andm is the value
of the displacement of the whole atomic layer.

Let the constant of the central interactions between the nearest neighbours in the fcc
crystal in the planes of the opposite banks of the interfaceβ differ from the force constant
α in the crystals; we assume that the interface passes between two adjacent (001) atomic
planes. Then the quantityε = 1 − β/α characterizes the relative change in the force
interaction near the interface. An enhancement (suppression) of the coupling between two
planes in the defect region corresponds toε < 0 (ε > 0). As we study one-component pure
shear waves of horizontal polarization, we assume the scalar model of the crystal dynamics
without loss of generality. Waves of horizontal polarization split off the waves polarized
in the sagittal plane propagating along a direction of high symmetry on a surface of high
symmetry [8]. That is why we have analogous results for shear horizontal waves in the
framework of the vector model. The translation invariance persists in the plane (001). We
introduce a Fourier transformation in the plane (001), and obtain the matrix of interaction
constants for the atoms in the following form (the defect planes are chosen to be the planes
n = 0, n = 1; indexn labels the planes):

Cnn(κ) = 12− 4 coskx cosky ≡ p i 6= 0, 1

Cnn+1(κ) = −1

2
(coskx + cosky) ≡ −4s i 6= 0, 1

C00(κ) = C11(κ) = p − 4ε

C01(κ) = C10(κ) = −4(1− ε)s
Cnn′(κ) = 0 |n− n′| > 2.

(13)

The eigen-solutions localized at the interface can be divided into two types—symmetrical
(s) and antisymmetrical (a) vibrations [16, 17]. Displacements of the layers closest to the
plane of the defect coincide for the symmetrical vibrations, and the displacements have
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opposite signs for the antisymmetrical vibrations. Vibrations of both types correspond to
the energies lying above, as well as below, the continuous energy spectrum of the bulk
vibrations.

Such a division of the displacement space into two types of vibration (actually into two
subspaces of displacements) is natural if the defect possesses a centre of symmetry, and, in
fact, was applied in the study of the dynamics of the one-dimensional chain with a local
‘symmetrical’ defect [21]. In our model, the set of the two types of vibration is complete.

We choose the normalized initial vectors corresponding to each type of vibration as the
sum of and the difference between the displacements of the opposite banks of the defect.

(1) Symmetrical waves. The initial vector has the form

hs = 1√
2
(|0|1〉 + |1|1〉) (14)

where the first number corresponds to the number of the crystal plane parallel to the defect’s,
and the second number shows the value of the displacement (in our case, only the sign
matters). The numbering (first number) increases toward the bulk of the crystal. Applying
procedure (7) to the chosen initial vector (14), we obtain the corresponding Jacobi matrix
whose elements have the form

J00 = p − θs Jii = p Jii+1 = −4s (15)

where

θs = 4[ε(1− s)+ s].
We use the notation (13) for the quantitiesp ands.

Note that the choice of initial vector (14) ensures that theJ -matrix elements show rapid
asymptotic behaviour starting from the first step.

(2) Antisymmetrical waves. The initial vector has the form

ha = 1√
2
(|0|1〉 − |1|1〉). (16)

Applying procedure (7) to the chosen initial vector (16) we obtain the corresponding Jacobi
matrix whose elements have the form

J00 = p − θa Jii = p Jii+1 = b (17)

where

θa = 4[ε(1+ s)− s].
The choice of initial vector (16) also ensures that theJ -matrix elements show asymptotic

values starting from the first step.

The form of theJ -matrices (15), (17) makes it possible to calculateexactlythe spectral
densities corresponding to the initial vectors (14), (16) in our model. So, the projected
spectral densities are

%s (a)(λ,κ) = 1

2πθs (a)

√
λ− λ1(κ)

√
λ2(κ)− λ

λ− λ∗s (a)(κ) (18)

where

λ∗s (a)(κ) = λ1(κ)− (θs (a) − 4s)2

θs (a)
= λ2(κ)− (θs (a) + 4s)2

θs (a)
.
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The total projected spectral density (the distribution function of the energies with a fixed
value ofκ) is the half-sum of the symmetrical and antisymmetrical spectral densities:

%(λ,κ) = 1

2

[
%s(λ,κ)+ %a(λ,κ)

]
. (19)

The distribution function of the energies which corresponds to the vibrations of the atom in
the defect area is given by the equation

%(λ) =
∫
%(λ,κ) dκ (20)

and it determines the thermodynamical properties of the crystal.
The edges of the bulk vibrational band in the model under consideration have the form

λ1 = p − 8s λ2 = p + 8s. (21)

Searching for a localized solution in the formχ(n) ∼ qn, we can obtain the damping
parametersq of the symmetrical and antisymmetrical waves [16, 17]:

qs = s

s + ε(1− s)
qa = s

ε(1+ s)− s .
(22)

In the case where 0< ε < 1 (suppression of the atomic interaction), vibrations of the
symmetrical type corresponding to energies below the continuous spectrum exist for any
value of the two-dimensional wave vectorκ. Vibrations of the antisymmetrical type with
energies below the continuous spectrum edge correspond to certain values ofs > s↓, where
s↓ = ε/4(2+ ε). The damping parameters are positive:qs, qa > 0. The energies of both
types of interface vibration are the following:

λs = λ1− 2ε2(1− s)2
s + ε(1− s)

λa = λ1− 2[2s − ε(1+ s)]2

ε(1+ s)− s .

(23)

Whenε < 0 (enhancement of the atomic interaction), vibrations of the antisymmetrical
type corresponding to energies above the continuous spectrum exist for any value of the
two-dimensional wave vectorκ. Vibrations of the symmetrical type with energies above the
continuous spectrum edge correspond to certain values ofs > s↑, wheres↑ = |ε|/4(2+|ε|).
The damping parameters are negative:qs, qa < 0. The energies of both types of localized
vibration are the following:

λs = λ2+ 2ε2(1+ s)2
s − ε(1+ s)

λa = λ2+ 2[2s + ε(1− s)]2

ε(s − 1)− s .

(24)

As ε decreases from its limiting valueε = 1 to ε = 0, the dispersion curves of
the low-energy interface vibrations corresponding to both symmetrical and antisymmetrical
modes approach the lower edge of the continuous spectrum,λ1(κ). At a fixed value of the
parameterε only symmetrical vibrations exist in the extreme long-wavelength region. When
the parameterε becomes negative, we have the opposite situation: the dispersive curves
move away from the upper bulk edgeλ1(κ) with the increase ofε, and only antisymmetrical
vibrations exist for an arbitrary value ofκ (figure 1).
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Figure 1. The phonon spectrum of the fcc lattice with the passive interface (direction0X of
the two-dimensional Brillouin zone is chosen;κ = (k, k)); branches of localized vibrations:
(fs) ε = 1 (free surface); (1)ε = 0.5; (2) ε = −0.5.

The behaviour of the PDPS for each type of vibration is shown in figure 2.
The free-surface PDPS is illustrated in figure 2(a). There is only one localized state in

this case (curve (fs) in figure 1), and%s = %a. Whenκ equals zero, we have a singularity
(% tends to infinity) at the lower edge of the bulk band. The means that the localized state
splits off from the bulk band without any threshold. While the wave vector increases, the
area under the curve%(λ,κ) decreases, and the energy transfers to the localized state.

Generally, the weight of the localized state can be calculated exactly:

µj(κ) =
∑
n

[
P 2
n (λ,κ)

]−1 = 1− q2
j (25)

where the subscriptj = s, a indicates the type of the vibration. The area under the curve
%j (λ,κ) is determined by the integral over the bulk band, which is equal to

Ij (κ) =
∫ λ2

λ1

%j (λ,κ) dλ = q2
J . (26)

Thus the conservation law can be presented as∫ λ2

λ1

%j (λ,κ) dλ+ µj(κ) = 1 (27)

for any two-dimensional wave vectorκ. In the short-wavelength limitκ = (π/2, π/2), the
spectral densities tend to zero, and the weight of the localized state is unity; the damping
parameter equals zero at this point, so the interface vibrations are localized at the defect
layers only.

For the case where 0< ε < 1 (suppression of the atomic interactions in the defect area),
PDPS of both types of vibration are shown in figure 2(b). There are two low-energy localized
states now (corresponding to curves (1) in figure 1), which do not occur simultaneously for
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(a)

(b)

(c)

Figure 2. (a) The PDPS for the (001) free surface of the fcc lattice,%s(λ, k) = %a(λ, k).
(b) PDPS for the case whereε = 0.5. %s(λ, k): symmetrical vibrations (left);%a(λ, k):
antisymmetrical vibrations (right). (c) PDPS for the case whereε = −0.5. %s(λ, k): symmetrical
vibrations (left);%a(λ, k): antisymmetrical vibrations (right).
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the arbitrary wave vectorκ; see equation (23). The symmetrical vibrations split off from
the bulk band whenκ = 0 without a threshold, and we have a singularity of the PDPS for
these waves in the long-wavelength limit. Then the weight of the symmetrical localized state
increases, and reaches its maximum value at the edge of the two-dimensional Brillouin zone;
meanwhile the contribution to the band decreases to zero until the pointκ = (π/2, π/2)
is reached. The antisymmetrical vibrations do not share the localized weight (26) until the
critical point κ↓ is reached;Ia = 1 everywhere in the area of larger wavelengths. The
singularity at the pointκ↓ shows that the antisymmetrical localized waves split off from the
bulk band, and further on the weight of the localized state increases. The behaviour of the
antisymmetrical waves at the Brillouin zone boundary is the same as for the symmetrical
waves: the vibrations are localized at the defect layers and do not penetrate into the bulk
of the crystals.

For ε < 0 (enhancement of the atomic interaction in the defect area), PDPS for each
of the types of vibration are illustrated in figure 2(c). We have two localized states
(corresponding to curves (2) in figure 1) with energies above the edge of the bulk band
λ2(κ), and neither type of vibration occurs for the arbitrary wave vectorκ; see equation
(24). The antisymmetrical localized vibrations exist for any wave vectorκ, and the PDPS do
not have any singularity, either on the edges or inside the bulk band. The behaviour of the
antisymmetrical vibrations is as follows: localized waves have more weight the further the
localized curve is situated from the bulk band, and so increase in weight with the increase
of |ε|; the value of the wave vector matters—the weight of the localized wave achieves
its maximum for short wavelengths. The symmetrical localized vibrations can occur for
short enough wavelengths—starting from the critical wave vectorκ↑. The area under the
curve %s(λ,κ) over the bulk band at fixedκ is equal to unity until the critical pointκ↑
is reached. At that point the localized symmetrical mode appears, and the weight of the
latter vibration increases as the wave vectorκ increases, reaching its maximum at the point
κ = (π/2, π/2).

We note that the system under consideration has no resonance vibrations, and thus has
no specific features inside the bulk band.

Briefly, we can state that the behaviour of the PDPS depending on the value of the two-
dimensional wave vector (principally, its singularities) is associated with the appearance
of localized vibrations in the system. The antisymmetrical vibrations as well as the
corresponding features at the edges of the bulk band are described by taking into account
explicitly the discreteness of the crystal structure, and thus cannot be shown in principle in
the framework of the phenomenological approach. Theexact functions%s(λ,κ), %a(λ,κ)
obtained in this paper determine the scattering cross sections of the passive planar defect
(interface), and allow us to calculate the contribution of the defect to the thermodynamics
of the crystal. Certainly, all of the peculiarities described persist for the interface SH waves
described in the framework of the vector model, and can also be treated for the spin waves
in magnetically ordered structures.
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